MEMORANDUM

TO: Mr. Addison Rice

Anderson, Mulholland and Associates

DATE: July 27, 2016

FROM: R. Infante

FILE: 1607228-1607235

RE:

Data Validation Air samples

SDG: 1607235A; 1607235B; 1607235C; 1606208D; 1607228A

SUMMARY

Full validation was performed on the data for one (1) gas sample analyzed for volatile organic compounds (full suite) and methanol by method Compendium Method TO-15: Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999. Methane analyzed by ASTM method D-1946-modified. Naphthalene by method Compendium Method TO-17: Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes, January 1999. The samples were collected at the Bristol Myer Squib, Humacao, PR site on July 9, 2016 and submitted to Eurofins Air Toxics, Inc. of Folson, California that analyzed and reported the results under delivery groups (SDG) 1607235A; 1607235B; 1607235C; 1606298D; and 1607228A.

The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: Compendium Method TO-15. Determination Of Volatile Organic Compounds (VOCs) In Air Collected In Specially-Prepared Canisters And Analyzed By Gas Chromatography/Mass Spectrometry (GC/MS), January, 1999; Validating Air Samples. Volatile Organic Analysis of Ambient Air in Canisters by Method TO-15, (SOP # HW-31. Revision #4. October, 2006. The QC criteria of methods TO-17 and ASTM method D-1946-modified. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

In general the data is valid as reported and may be used for decision making purposes. The data results are acceptable for use. Results for tetrahydrofuran was qualified as estimated (UJ) in sample 1607235A due to continuing calibration check % difference outside method performance limit.

SAMPLES

The samples included in the review are listed below

Client Sample ID	Lab. Sample ID	Collected Date	Matrix	Analysis
==========	=========	========	=======	=======================================
B730IA-1 (070816)	1607235A-07A	07/09/16	Air	TO-15 (full suite)
B730IA-1 (070816)	1607235B-07A	07/09/16	Air	TO-15 (methanol)
B730IA-1	1607228A-07A	07/09/16	Air	TO-17 (naphthalene)
B730IA-1 (070816)	1607235C-07A	07/09/16	Air	ASTM D-1946 (methane)

REVIEW ELEMENTS

Sample data were reviewed for the following parameters, where applicable to the method

- o Agreement of analysis conducted with chain of custody (COC) form
- o Holding time and sample preservation
- o Gas chromatography/mass spectrometry (GC/MS) tunes
- o Initial and continuing calibrations
- o Method blanks/trip blanks/field blank
- o Canister cleaning certification criteria
- Surrogate spike recovery
- o Internal standard performance and retention times
- o Field duplicate results
- o Laboratory control sample/laboratory control sample duplicate (LCS/LCSD) results
- o Quantitation limits and sample results

DISCUSSION

Agreement of Analysis Conducted with COC Request

Sample reports corresponded to the analytical request designated on the chain-of-custody form.

The Chain of Custody (COC) information for sample B7IA-1D(061016) did not match the entry on the sample tag with regard to sample identification. The information on the COC was used to process and report the sample.

Holding Times and Sample Preservation

Sample preservation was acceptable. Samples received in good conditions.

Samples analyzed within method recommended holding time.

GC/MS Tunes

The frequency and abundance of bromofluorobenzene (BFB) tunes were within the QC acceptance criteria. All samples were analyzed within the tuning criteria associated with the method.

Initial and Continuing Calibrations

VOCs - (Method TO-15-full suite)

Initial calibration meets method performance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard, continuing calibration meet the method performance criteria except for the following analytes:

DATE	LAB FILE ID#	CRITERIA OUT RFs, %RSD, <u>%D</u> , r	COMPOUND	SAMPLES AFFECTED
Initial and o		on met the method per	formance criteria ex	cept the cases described in
MSD-17	_l			
07/14/16	1607235A-09A	-38 %	Tetrahydrofuran	1607235A-07A

Results qualified estimated (J) or (UJ) in affected samples.

VOCs - (Method TO-15-methanol)

A one point initial calibration meets method performance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard, continuing calibration meet the method performance criteria.

<u>VOCs - (Method TO-17-naphthalene)</u>

Initial calibration meets method performance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard, continuing calibration meet the method performance criteria.

VOCs - (Method ASTM D-1946-modified - methane)

Initial calibration meets method performance criteria. Ongoing accuracy of the instrument was determined by the analysis of a continuing calibration standard, continuing calibration meet the method performance criteria

Method Blank/Trip Blank/Field Blank

Several VOCs TO-15 (full suite) analytes were detected in the method blanks analyzed below the reporting limit/action level. Laboratory qualified the results as estimated (J) in the method blanks. No further qualification made.

No sample analytes were detected in methods blanks analyzed for naphthalene, methanol and methane.

Summa canister met cleaning certification criteria.

No trip/field blank analyzed with this data package.

Surrogate Spike Recovery

The surrogate recoveries as per method TO-15, TO-17 and ASTM D-1946 were within the laboratory QC acceptance limits in all samples analyzed.

Internal Standard Performance

VOCs - TO-15 and TO-17

Samples were spiked with the method specified internal standard. Internal standard are performance and retention times met the QC acceptance criteria in all sample analyses and calibration standards.

Laboratory/Field Duplicate Results

Laboratory duplicates (LCS/LCSD) were analyzed as part of this data set. Target analytes meet the RPD performance criteria of \pm 25 % for analytes 5 x SQL .

LCS/LCSD Results

LCS/LCSD (blank spike) analyzed by the laboratory associated with this data package; % recoveries and RPD within laboratory and generally acceptable control limits.

Quantitation Limits and Sample Results

Dilutions were not performed on TO-15 samples (see worksheet).

Rafael Info

LIC. ¥ 101

Calculations were spot checked.

Certification

The samples reported on SDG: 1607235A; 1607235B; 1607235C; and 1607228A and described in the sample table were analyzed following standard procedures accepted by regulatory agencies. The quality control requirements met the methods criteria except in the occasions described in this document. The results are valid some of the results were qualified.

91670

RafaelUnfante

Chemist License 1888

Client Sample ID: B30IA-1 (070816) Lab ID#: 1607235A-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Oil. Factor:	e071418 1.64		Date of Collection: 7/9/16 6:12:00 PM Date of Analysis: 7/14/16 09:54 PM					
	Rpt. Limit	Amount	Rpt. Limit	Amount				
Compound	(ppbv)	(ppbv)	(ug/m3)	(ug/m3)				
reon 12	0.16	0.39	0.81	1.9				
reon 114	0.16	Not Detected	1.1	Not Detected				
Chloromethane	0.82	0.60 J	1.7	1.2 J				
/inyl Chloride	0.16	Not Detected	0.42	Not Detected				
I,3-Butadiene	0.16	Not Detected	0.36	Not Detected				
Bromomethane	0.82	Not Detected	3.2	Not Detected				
Chloroethane	0.82	Not Detected	2.2	Not Detected				
Freon 11	0.16	0.26	0.92	1.4				
Ethanol	0.82	5.8	1.5	11				
Freon 113	0.16	0.070 J	1.2	0.54 J				
,1-Dichloroethene	0.16	Not Detected	0.65	Not Detected				
Acetone	0.82	6.8	1.9	16				
2-Propanol	0.82	3.0	2.0	7.3				
Carbon Disulfide	0.82	0.65 J	2.6	2.0 J				
3-Chloropropene	0.82	Not Detected	2.6	Not Detected				
Methylene Chloride	0.33	0.074 J	1.1	0.26 J				
Methyl tert-butyl ether	0.16	Not Detected	0.59	Not Detected				
rans-1,2-Dichloroethene	0.16	Not Detected	0.65	Not Detected				
fexane	0.16	Not Detected	0.58	Not Detected				
,1-Dichloroethane	0.16	Not Detected	0.66	Not Detected				
P-Butanone (Methyl Ethyl Ketone)	0.82	1.2	2.4	3,6				
is-1,2-Dichloroethene	0.16	Not Detected	0.65	Not Detected				
etrahydrofuran	0.82	Not Detected UJ 1/2	2.4	Not Detected U.				
Chloroform	0.16	Not Detected	0.80	Not Detected Of				
,1,1-Trichloroethane	0.16	Not Detected	0.89	Not Detected				
Cyclohexane	0.16	Not Detected	0.56	Not Detected				
Carbon Tetrachloride	0.16	0.066 J	1.0	0,42 J				
2,2,4-Trimethylpentane	0.82	Not Detected	3.8	Not Detected				
Benzene	0.16	0.073 J	0.52	0.23 J				
,2-Dichloroethane	0.16	Not Detected	0.66	Not Detected				
leptane	0.16	Not Detected	0.67	Not Detected				
richloroethene	0.16	Not Detected	0.88	Not Detected				
,2-Dichloropropane	0.16	Not Detected	0.76	Not Detected				
,4-Dioxane	0.16	Not Detected	0.78	Not Detected				
romodichloromethane	0.16	Not Detected	1.1	Not Detected				
is-1,3-Dichloropropene	0.16							
-Methyl-2-pentanone	0.16	Not Detected	0.74	Not Detected				
-ivietnyi-z-pentanone 'oluene	0.16	0.12 J	0.67	049 J				
rans-1,3-Dichloropropene		0.18	0.62					
,1,2-Trichloroethane	0.16	Not Detected	0.74	Not Date				
etrachloroethene	0.16 0.16	Not Detected	0.89/0	Rafae Not Dete				
errennininene	11.76	Not Detected	1.1	Not Detected !				

Client Sample ID: B30IA-1 (070816) Lab ID#: 1607235A-07A

MODIFIED EPA METHOD TO-15 GC/MS FULL SCAN

File Name: Dil. Factor:	e071418 1.64	Date of Collection: 7/9/16 6:12:00 PM Date of Analysis: 7/14/16 09:54 PM				
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)		
Dibromochloromethane	0.16	Not Detected	1.4	Not Detected		
1,2-Dibromoethane (EDB)	0.16	Not Detected	1.3	Not Detected		
Chlorobenzene	0.16	Not Detected	0.76	Not Detected		
Ethyl Benzene	0.16	Not Detected	0.71	Not Detected		
m,p-Xylene	0.16	0.12 J	0.71	0.54 J		
o-Xylene	0.16	Not Detected	0.71	Not Detected		
Styrene	0.16	Not Detected	0.70	Not Detected		
Bromoform	0.16	Not Detected	1.7	Not Detected		
Cumene	0.16	Not Detected	0.81	Not Detected		
1,1,2,2-Tetrachloroethane	0.16	Not Detected	1.1	Not Detected		
Propylbenzene	0.16	Not Detected	0.81	Not Detected		
4-Ethyltoluene	0.16	Not Detected	0.81	Not Detected		
1,3,5-Trimethylbenzene	0.16	Not Detected	0.81	Not Detected		
1,2,4-Trimethylbenzene	0.16	Not Detected	0.81	Not Detected		
1,3-Dichlorobenzene	0.16	Not Detected	0.99	Not Detected		
1,4-Dichlorobenzene	0.16	Not Detected	0.99	Not Detected		
alpha-Chlorotoluene	0.16	Not Detected	0.85	Not Detected		
1,2-Dichlorobenzene	0.16	Not Detected	0.99	Not Detected		
1,2,4-Trichlorobenzene	0.82	Not Detected	6.1	Not Detected		
Hexachlorobutadiene	0.82	Not Detected	8.7	Not Detected		
Naphthalene	0.82	Not Detected	4.3	Not Detected		

J = Estimated value.

UJ = Analyte associated with low bias in the CCV.

Container Type: 6 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Limits
1,2-Dichloroethane-d4	108	70-130
Toluene-d8	97	70-130
4-Bromofluorobenzene	98	70-130

Client Sample ID: B30IA-1 (070816)

Lab ID#: 1607235B-07A

EPA METHOD TO-15 GC/MS

File Name: Dil. Factor:	14071920 1.64		e of Collection: 7/9 of Analysis: 7/19	
Compound	Rpt. Limit (ppbv)	Amount (ppbv)	Rpt. Limit (ug/m3)	Amount (ug/m3)
Methanol	160	Not Detected	210	Not Detected

Container Type: 6 Liter Summa Canister (100% Certified)

Surrogates	%Recovery	Method Limits
1,2-Dichloroethane-d4	103	70-130
Toluene-d8	102	70-130
4-Bromofluorobenzene	96	70-130

Client Sample ID: B30IA-1 (070816) Lab ID#: 1607235C-07A

NATURAL GAS ANALYSIS BY MODIFIED ASTM D-1946

File Name:	10071421	Date of Collect	tion: 7/9/16 6:12:00 PM
Dil. Factor:	1.64	Date of Analys	sis: 7/14/16 07:36 PM
		Rpt. Limit	Amount
Compound		(%)	(%)
Methane		0.00016	0.00037

Container Type: 6 Liter Summa Canister (100% Certified)

Client Sample ID: B30IA-1 Lab ID#: 1607228A-07A

EDA	BATE!	THOD	TO	17
EFA	TAILET.	IRVD	-1 W-	1 /

File Name: Dil. Factor:	6071409 Date o	f Extraction: NADate Date	of Collection: 7/9/ of Analysis: 7/14/	
Compound	Rpt. Limit (ppbv)	Rpt. Limit (ug/m3)	Amount (ppbv)	Amount (ug/m3)
Naphthalene	0.0090	0.047	0.017	0.087
Air Sample Volume(L): 21.1 Container Type: TO-17 VI Tube				
Surrogates		%Recovery		Method Limits
Naphthalene-d8		112		50-150

TO-17 SAMPLE COLLECTION

Sample Transportation Notice
Relinquishing signature on this document indicates that sample is being shipped in compliance with all applicable local, State, Federal, national, and international laws, regulations and ordinances of any kind. Air Toxics Limited assumes no liability with respect to the collection, handling or shipping of these samples. Relinquishing signature also indicates agreement to hold harmless, defend, and indemnify Air Toxics Limited against any claim, demand, or action, of any kind, related to the collection, handling, or shipping of samples. D.O.T. Hotlins (800) 467-4822.

180 BLUE RAVINE ROAD, SUITE B **FOLSOM, CA 95630** (916) 985-1000 FAX (916) 985-1020

Page 1 of 2

Project Manager Terry TAYLOY			F	Projec	t Info:			Turn Arou	nd Ba			<u>حــ</u> ان	_
Collected by: (Print and Sign) RO, TT, DL				-				Time:	Un or	oor ing			
Company AMA) Email	Atavlore	ZAMII COUKU	Hered	?O. #_				Normal	* 3	pphv.			
Address 5700 Wetchiter Ave City Purchase	State A	N ZIP 105	77 P	^o roject	# <u>BUS B1</u>	8 VI		D aRush		урьу. уд/m3			
Phone 914-251-0400 x309 Fax 914	-721-172	36		Project	Name			B301A- specify		mg/ms		∍	
Lab I.D. Field Sample I.D. (Location)	Engraved or Stamped Tube #	Date of Collection (mm/dd/yy)	Start 7 (hr: n		End Time (hr:min)	Pre-Tes Flow Ra		I WORTHOO	/mdoor/	Outdoor Temp	Indoor Air	Soil Vapor	
B18IA -1	151814	7/9/16	180	3	0957	35	35	-	85	50	X C		키
BISTA-2	151188	7/9/16	185	52	1852	36	34	1680	86		OS C		ᆁ
B18-TA-3	150090	7/9/16	18,	27	1827	36	38	17,760	98		XIC]
RIRTA-4	153639	7/4/16	18:	36	1836	34	33	16,080		78	Mc]
BIRTAS	150877	7/9/16	184	4	1844	35	34	16,560	79		XC]
BISTA-ID	149733	7/9/16	180	3	1051	35	33	11,420	85	60	M C		1
609A 1 B30 IA- 1 Y	37170	7/4/16	181	0	1810	36	52	21,120	81	81	X		1
B13AA- 070816	149726	7/11/16	114	5	1145	34	36	16,800	75	87		S O C]
B1855-1	149703	7/11/16	1746		1749	134	134	402	77	75) [X] C	1
BISSS-7	149853	7/12/16	193	St	1941	133	134	402	70	74) 	3
Relinquished by: (signature) Relinquished by: (signature) Date/Time Date/Time	00	ed by: (signature) FEO E	X	ate/Tim	8 7	/14/14 In 320	Notes: # 2	the fer	Hur B3 moles	OIA	-1.	MII	
Relinquished by: (signature) Date/Time	Receive	ed by: (signatu	re) Da	ate/Tim	6	0.134.7	tu N	Nowu	ط. ا≺ 	epa-1	CL	,ly	
Lab. UST ppe vame ()							leide v						1
Conty: Fed 5x	<u> </u>	9,8	3,5		SDR	******	Yes No	None	1	6072	28		

	Project Number:1607235A
	Date:07/09/2016
REVIEW OF VOLATILE ORGATIVE ORGATIVE ORGATIVE OF COLORD CO	ANIC PACKAGE vere created to delineate required validation refessional judgment to make more informed the sample results were assessed according to ving order of precedence: QC criteria from ganic Compounds (VOCs) In Air Collected In
anuary, 1999"; USEPA Hazardous Waste Support Branch Analysis of Ambient Air in Canisters by Method TO-15, (SOF QC criteria and data validation actions listed on the data revision cument, unless otherwise noted. The hardcopied (laboratory name) _EurofinsAir_Toxicseviewed and the quality control and performance data summa	ch. Validating Air Samples. Volatile Organic 2 # HW-31. Revision #4. October, 2006). The ew worksheets are from the primary guidance data package received has beer
ab. Project/SDG No.:1607235A1	Sample matrix:Air
rip blank No.: ield blank No.: iquipment blank No.: ield duplicate No.:	
X Data CompletenessX Holding TimesX GC/MS TuningX_ Internal Standard PerformanceX BlanksX Surrogate RecoveriesN/A_ Matrix Spike/Matrix Spike Duplicate Overall Comments:_VOCs_by_method_TO-15_(full suite	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Definition of Qualifiers: - Estimated results - Compound not detected - Rejected data - But a compound nondetect - Rejected data - Compound not detected - Rejected data - Rej	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED

All criteria were met_	_X	
Critena were not met		
and/or see below	200	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	рН	ACTION
	alyzed within the recor	nmended method hold	ing time.	Samples received in good
conditions.				

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples -7 days from sample collection for unpreserved samples, 4° C, no air bubbles. Soil samples -7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): N/A – summa canisters

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10° C), estimate positive results (J) and nondetects (UJ).

List

	All criteria were metX Criteria were not met see below
GC/MS TUNING	
The assessment of the tuning results is to determine if the sample i standard tuning QC limits	nstrumentation is within the
X The BFB performance results were reviewed and found to be v	vithin the specified criteria.
XBFB tuning was performed for every 24 hours of sample analyst	sis.
If no, use professional judgment to determine whether the associate qualified or rejected.	d data should be accepted,

samples

qualified or rejected.

affected:

the

If mass calibration is in error, all associated data are rejected.

All criteria were met
Criteria were not met
and/or see belowX

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	03/17/16
Dates of continuing calibrat	tion:07/14/16
Instrument ID numbers:	_MSD-E
Matrix/Level:	Air/low

DATE	LAB FILE ID#	CRITERIA OUT	COMPOUND	SAMPLES
		RFs, %RSD, <u>%D</u> , r		AFFECTED
Initial and co	ontinuing calibration	n met the method perf	ormance criteria excep	ot for the following:
07/14/16	1607235A-09A	-38 %	Tetrahydrofuran	1607235A-07A

Note: Samples results qualified as estimated (J) in affected sample.

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be $\leq 30\%$ regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met
Criteria were not met
and/or see belowX

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE Analyzed	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION/ UNITS
_None_of_the_ _action_level_t	_analyte_detecte for_blanks	ed_in_the_meth	od/laboratory_blank_at	pove_the_reporting_limit/
Note:		action level. La		alyzed on 07/14/16 below the results as estimated (J). No
Summa_d	anisters_met_cl	eaning_certifica	ation_criteria	
Field/Equipmer	nt/Trip blank			
DATE Analyzed	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_field/trip/eq	uipment_blanks	_analyzed_with	_this_data_package	

All criteria were met	
Criteria were not met	
and/or see belowX	

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is ≥ SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					William .
				<u> </u>	
			-		
	1				
-	<u> </u>				

All criteria were metX
Criteria were not met
and/or see below

ACTION

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

SURROGATE COMPOUND

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

· · · · · · · · · · · · · · · · · ·	00111100	TIE GOIIII G	OHD	AUTION
	1,2-DICHLOROETHANE- d4	Toluene- d8	4-BFB	
_Surrogate_rec	overies_within_laboratory_contro	ol_limits	- 15	
QC Limits* (Air)				

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

_70__to_130_ _70__to_130__

Actions:

SAMPLE ID

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

LL to UL 70 to 130

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do Sample ID:			not meet the criteria. Matrix/Level:			
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
	are_not_required_as			•	ike_used_to_assess	

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

^{*} If QC limits are not available, use limits of 70 – 130 %.

All criteria were met
Criteria were not met
and/or see below N/A

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le	vel/Unit:	
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
				50"	
		0			
	100				
- A					

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _X	
Criteria were not met	
and/or see below	

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT			
LCS/LCSD_%_recoveries_and_RPD_within_laboratory_control_limits							

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R <ll< th=""><th>%R > UL</th></ll<>	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

			All criteria were metX Criteria were not met and/or see below
IX.	LABORATORY	Y DUPLICATE PRECISION	
	Sample IDs:	LCS/LCSD_(07/14/2016)	Matrix:Air

Laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL		DUPLICATE CONC.	RPD	ACTION	
RPD within laboratory and generally acceptable control limits.						

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metX
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	tandard_area_and_reation_standards				both_samples
			-		
Actions:					

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

2. If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met __X__ Criteria were not met and/or see below ____

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1607235A-07A

2-Propanol

RF = 1.69275

[] = (67546)(5.0)/(110110)(1.69275)

= 1.812 ppbv OK

All criteria were metX
Criteria were not met
and/or see below

XII.	ΟΠΑΝ	ITITATI	ONI	IMITS
All.	WUCH		V JIM E	HVII 1 53

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
All camples we	ere diluted by a factor of 1	64 v
Au Samples we	are diluted by a factor of 1	.04 A.
	EMEST PERSON	
E -		

Percent Solids
List samples which have ≤ 50 % solids

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R) $\,$

	Project Number:1607235B Date:07/09/2016
REVIEW OF VOLATILE ORGANIC Representations. This document will assist the reviewer in using profession decision and in better serving the needs of the data users. The same USEPA data validation guidance documents in the following or "Compendium Method TO-15. Determination of Volatile Organic Ospecially-Prepared Canisters and Analyzed By Gas Chromato January, 1999"; USEPA Hazardous Waste Support Branch. Val Analysis of Ambient Air in Canisters by Method TO-15, (SOP # HW QC criteria and data validation actions listed on the data review word document, unless otherwise noted. The hardcopied (laboratory name) _EurofinsAir_Toxics_reviewed and the quality control and performance data summarized.	reated to delineate required validation onal judgment to make more informed uple results were assessed according to der of precedence: QC criteria from compounds (VOCs) In Air Collected In graphy/Mass Spectrometry (GC/MS), idating Air Samples. Volatile Organic /-31. Revision #4. October, 2006). The rksheets are from the primary guidance data package received has been
Lab. Project/SDG No.:1607235B No. of Samples:1	Sample matrix:Air
Trip blank No.: Field blank No.: Equipment blank No.: Field duplicate No.:	
X Holding TimesXX GC/MS TuningXX Internal Standard PerformanceXX BlanksX	Laboratory Control Spikes Field Duplicates Calibrations Compound Identifications Compound Quantitation Quantitation Limits
Overall Comments:Methanol_by_method_TO-15	
Definition of Qualifiers: J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated nondetect	
Date: 67/27/2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED

All criteria were met _	X_
Criteria were not met	
and/or see below	_95

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
All samples ana	lyzed within the recom	 mended method holding	g time. All	summa canisters received
in good condition				
			-	
			+	GEN WANTER

<u>Criteria</u>

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): N/A – summa canisters

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

			All criteria were metX Criteria were not met see below
GC/MS TUNING			
The assessment of the standard tuning QC limit		to determine if the sample inst	rumentation is within the
XThe BFB perform	nance results wer	re reviewed and found to be with	in the specified criteria.
XBFB tuning was	performed for eve	ery 24 hours of sample analysis.	
If no, use professional j qualified or rejected.	udgment to deter	rmine whether the associated d	ata should be accepted,
List	the	samples	affected:
If mass calibration is in e	rror, all associate	d data are rejected.	_

All criteria were met _X_	_
Criteria were not met	
and/or see below	

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	07/19/2016
Dates of continuing calibrat	tion:07/19/2016
Instrument ID numbers:	_MSD-14
Matrix/Level:	Air/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
One point calibration	calibration retention	on. Initia times n	I and continuing calibra neet method specific re	ations meet method sp quirements.	pecific requirements. Initial

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be ≤ 15 % regardless of method requirements for CCC.

All %Ds must be < 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _X
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
Field/Equipmen				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
		4		
2,00				

All criteria were met _X
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is \leq sample quantitation limit (SQL) and \leq AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					E
				-	
			- will		·
			Vision 1		
		1000			
	-				
	1				
4 900					_
Da Car					

All criteria were met _	X_
Criteria were not met	
and/or see below	-

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

A2	M	DI	ŧΠ
34	111	~.	ш

SURROGATE COMPOUND

ACTION

1.2-DICHLOROETHANE**d4**

Toluene-4-BFB

d8

_Surrogate_recoveries_within_laboratory_control_limits						
	277					
QC Limits* (Air)						
LL_to_UL70to_130	_70to_13070to_130					

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- If QC limits are not available, use limits of 80 120 % for agueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	N	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which Sample ID:			ch do not meet the criteria. Matrix/Level:			
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
	_are_not_required_as	•		· •	ike_used_to_assess	
	s are laboratory in-ho				r limit, UL = upper limit.	

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met				
Criteria were not met				
and/or see belowN/A				

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD – Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:	<u> </u>		Matrix/Le	vel/Unit	
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
		P	A 19494 - 34		
			7 7 70	P	
			-		
			(p)		
27	AL ALE - 182 - 192 - 192 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 - 193 -	6	101		· · ·
	Barris .				
Control of the Contro					

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _X
Criteria were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT	
_No_LCS/LCSD_(Blank_spike)_analyzed_in_this_data_package					
		20 - 10 10 10 10 10 10 10 10 10 10 10 10 10			
-					

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or <u>No</u>. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

		All cateria were met Criteria were not met and/or see belowN/A
IX.	LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
N	o laboratory/	field duplicate	analyzed with	this data	package	

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metX
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	andard_area_and_reation_standards	etention_times_	within_laboratory	_control_limits_for_	both_samples
Actions:					

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > +40%
Positive results	J	J
Nondetected results	R	ACCEPT

2. If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were metX	
Criteria were not met	
and/or see below	

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Calibration check

1,2-Dichloroethane-d4

RF = 2.08040

[] = (255976)(400)/(119088)(2.08040)

= 413.3 ppbv OK

		Criteria were not met and/or see below
I. QUANT	ITATION LIMITS	
Dilution	performed	
SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
77 WAIL FT 1D	BILOTIONTACTOR	NEAGONG! ON DIEGITOR
ll samples dilu	ited by a factor of less th	an 1.64.
	· · · · · · · · · · · · · · · · · · ·	
Percent List sam	Solids ples which have ≤ 50 %	solids
10000		
tions:		40 5004
if the %	solids of a soil sample is	10-50%, estimate positive results (J) and nondetects (UJ)
If the % (R)	solids of a soil sample is	< 10%, estimate positive results (J) and reject nondetects

All criteria were met _X__

	Project Number:1607228A Date:07/09/2016
REVIEW OF VOLATILE ORGANI The following guidelines for evaluating volatile organics were actions. This document will assist the reviewer in using profested in the following decision and in better serving the needs of the data users. The subject of the data users of the data users. The subject of the data validation guidance documents in the following Compendium Method TO-15. Determination of Volatile Organic Or	created to delineate required validation ssional judgment to make more informed cample results were assessed according to order of precedence: QC criteria from a Compounds (VOCs) In Air Collected In natography/Mass Spectrometry (GC/MS), Validating Air Samples. Volatile Organic HW-31. Revision #4. October, 2006). The worksheets are from the primary guidance
_ab. Project/SDG No.:1607228A	Sample matrix:Air
X Holding TimesX GC/MS TuningX Internal Standard Performance	_X Laboratory Control Spikes _X Field Duplicates _X Calibrations _X Compound Identifications _X Compound Quantitation _X Quantitation Limits
Definition of Qualifiers: - Estimated results J- Compound not detected R- Rejected data JJ- Estimated nondetect Reviewer: - Augul August Date: 07/27/2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
4		
		2010 H 2 20 40 0 40 0 40 50
<u></u>		
V		
-		
)·	
	<u> </u>	
(1000) - p - 1000 - 1000		
		100,000 00,000
	-	
)
		. 1
	- 188310	
(=U(1M)		9

All criteria were met	X
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
and was not wit		the form of blue ice w		emperature was measured nt. Analysis proceeded. No
	110000000000000000000000000000000000000	44) 50 50 100 100 100 110		

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): 16.2°C

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

		Cri	All criteria were metX iteria were not met see below
GC/MS TUNING			
The assessment of standard tuning Q	_	o determine if the sample instru	ımentation is within the
_XThe BFB	performance results were	reviewed and found to be within	the specified criteria.
_XBFB tunin	g was performed for ever	y 24 hours of sample analysis.	
lf no, use profess qualified or rejecte		nine whether the associated da	ta should be accepted,
List	the	samples	affected:
	······································		

If mass calibration is in error, all associated data are rejected.

All criteria were	metX
Criteria were no	t met
and/or see below	W

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	07/12-13/16
Dates of continuing calibr	ration:07/14/16
Instrument ID numbers:_	MSD-6
Matrix/Level:	Air/low

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#		RFs, %RSD, %D, r		AFFECTED
times mee	t method	specifi	c requirements. Desorp	pecific requirements. Initiation efficiency verification	
99.8 %; m	eet metho	od speci	fic requirements.		
99.8 %; m	eet metho	od speci	nc requirements.		
99.8 %; m	eet metho	od speci	nc requirements.		
99.8 %; m	eet metho	od speci	nc requirements.		

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 15 % regardless of method requirements for CCC.

All %Ds must be \leq 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _X
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method	d_blank_meeth	_method_speci	fic_criteria	
Field/Equipmen	t/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
No_field/trip/equ	ipment_blanks	_analyzed_with	n_this_data_package	
	32000			
				2 2 22 10 25 1 17 12 2 2 2
		151670		

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					- 1075
					THE PARTY NAMED IN
				1755	
			100	1	
·					
			Ì		
	4				
- Tar. 10					
200		1		 	
0				-	

All criteria were metX
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

			-	4-
Ω2	М	PI.	F	ın

SURROGATE COMPOUND

ACTION

1.2-DICHLOROETHANE-Toluene**d4**

4-8FB

d8

_Surrogate_recoveries_within_lal	poratory_control_limits	
		3850
		_
QC Limits* (Air)		
LL_to_ULto	tototo	

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

Sample ID:		not meet the criteria. Matrix/Level:			
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION
	are_not_required_as	-		•	ike_used_to_assess

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

iboratory in-house performance criteria, LL = lower limit, UL = upper limit.

If QC limits are not available, use limits of 70 – 130 %.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:			Matrix/Le	vel/Unit	
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
				· · · · · · · · · · · · · · · · · · ·	
	275.7228/ 2698				25.35.406.25.25.30.30
		100			
	-19/2				

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metX
Criteria were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

LCS II	J
--------	---

COMPOUND

% R

QC LIMIT

u:::::_:abo! ato! y_	_control_limits	 	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or <u>No</u>. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

			All criteria were metX_ Criteria were not met and/or see below
łX.	LABORATORY	//FIELD DUPLICATE PRECISION	
	Sample IDs:	_ LCS/LCSD_(laboratory)	Matrix:Air

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information.

Suggested criteria: RPD ± 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
			ata package. LC		% recoveries RPD used to

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were met _	X_
Criteria were not met	
and/or see below	_

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within \pm 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
	andard_area_and_re ation_standards	etention_times_	within_laboratory	_control_limits_for_	both_samples
Actions:				52.75	

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met _	X_	_
Criteria were not met		
and/or see below		

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

1607228A-07A

Naphthalene

RF = 1.93557

[] = (43615)(36)/(440102)(1.93557)

= 1.843 ng OK

All criteria were met _X
Criteria were not met
and/or see below

XII.	OLIAN	ITITAT	IONI	IMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
No dilution perf	formed.	
·		
Towns or other Designation of the Lorentz of the Lo		

Percent Solids		
List samples which ha	ve ≤ 50 % solids	
·	-	
		y was

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R)

		1607235C
	Date:	_07/09/2016
REVIEW OF VOLATILE ORGATHE following guidelines for evaluating volatile organics was actions. This document will assist the reviewer in using prodecision and in better serving the needs of the data users. The USEPA data validation guidance documents in the following D-1946 method for measuring permanent gases and light samples using gas chromatography (GC) and a thermal conditional conditions.	ANIC PACKAGE vere created to deligonate of precedence hydrocarbons in re-	neate required validation to make more informed are assessed according to a: QC criteria from ASTM finery and other sources
detection (FID). Validating Air Samples. Volatile Organic Antro- FO-15, (SOP # HW-31. Revision #4. October, 2006). The Quite data review worksheets are from the primary guidance doc The hardcopied (laboratory name) _Eurofins reviewed and the quality control and performance data summa	nalysis of Ambient Ai C criteria and data v cument, unless other data pack arized. The data revie	ir in Canisters by Method alidation actions listed or wise noted. tage received has been aw for VOCs included:
_ab. Project/SDG No.:1607235C	Sample n	natrix:Air
Trip blank No.: Field blank No.: Equipment blank No.: Field duplicate No.:	<u></u>	
X Data Completeness	X Lahorate	ory Control Spikes
X Holding Times	X Field Du	
N/A_GC/MS Tuning	X Calibrati	
N/A_ Internal Standard Performance	X Compou	
X Blanks	XCompou	
N/A_ Surrogate Recoveries N/A_ Matrix Spike/Matrix Spike Duplicate	X Quantita	ation limits
IV/A_ Iviality oblike/iviality oblike Dublicate		
Overall Comments:_Methane_by_ASTM_method_D-194	6_(modified)	
Definition of Qualifiers:		
J- Estimated results		
J- Compound not detected		
R- Rejected data		
JJ- Estimated nondetect		
Reviewer: Ralan Mant	Pa 0.0	
Date: 07/27/2016		

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
		1 (134) - 177 - 174

All criteria were met _X_	_
Criteria were not met	
and/or see below	

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
All complex and	hand within the second	manded method bolding	- time All	auguna agristara ressived
in good condition		nenaea meuloa nolaini	g ume. All	summa canisters received
			-	

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles.

Aqueous samples -7 days from sample collection for unpreserved samples, 4° C, no air bubbles. Soil samples- 7 days from sample collection.

Cooler temperature (Criteria: 4 ± 2 °C): N/A – summa canisters

Actions

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

		Criteria	a were not met see below
GC/MS TUNING			
The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits			
N/A_ The BFB p	performance results were	reviewed and found to be within th	e specified criteria.
N/A_ BFB tuning	g was performed for ever	y 24 hours of sample analysis.	
If no, use profess qualified or rejecte		nine whether the associated data	should be accepted,
List	the	samples	affected:
If mass calibration	is in error, all associated	data are rejected.	

Note: Samples analyzed using GC with either TCD or FID detection.

All criteria were met _X
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:_	01/15/16	_
Dates of continuing calibra	ntion:_07/14/16	_
Instrument ID numbers:	GC-10	
Matrix/Level:	Air/low	

DATE	LAB	FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#		RFs, %RSD, %D, r		AFFECTED
Initial and	l continuir	ng calib	rations meet method s	pecific requirements. I	Initial calibration retention
_				-	
times mee	et method	specific	requirements.		
times med	et method	specific	requirements.		T
times med	et method	specific	requirements.		
times mee	et method	specific	requirements.		
times mee	et method	specific	requirements.		

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be \leq 15 % regardless of method requirements for CCC.

All %Ds must be < 30% regardless of method requirements for CCC.

Method TO-15 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 30%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were met _X
Criteria were not met
and/or see below

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LABID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
All_method				
Field/Equipmen				
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
	- · ·			
	20.20			

All criteria were met _X
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene)

ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					, on white to
					and the same of th
				-0.	
		- 612			
					-
	-13				
100					
10-					

All criteria were metN/A
Criteria were not met
and/or see below

ACTION

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

SURROGATE COMPOUND

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix: solid/aqueous

SAMPLE ID

_Surrogate_standard	ds_not_requi	ired_by_the_me	ethod		
	- · ·				
QC Limits* (Air) LL_to_UL	to	to	to	to	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	J	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%.

If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:			Matrix	/Level:		
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
	not_required_as_part			l_D-1946;_blanl	k_spike_used_to_assess	

- QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J).

If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met
Criteria were not met
and/or see belowN/A

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Method TO-15 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION
		2			
				- 1	
			- 3		2
		5 B			
	1. J. A.		-		· · · · · · · · · · · · · · · · · · ·
To Charles					

Actions:

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were met _X
Critena were not met
and/or see below

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

LOGIN

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

0/ D

List the %R of compounds which do not meet the criteria

COMPOUND

	LCO ID	COMPOUND	70 K	QC LIIVII I
LCS/LC	SD_(Blank_spik	ke)_analyzed_in_this_data	_package;_recoveries	_and_RPD
within_la	aboratory_contro	ol_limits		
				100 KE
			<u> </u>	
			5000	

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

			Alt criteria were metX Criteria were not met and/or see below
IX.	FIELD/LABORA	ATORY DUPLICATE PRECISION	
	Sample ID	LCS/LCSD_(07/14/16)	Matrix:Air

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 25% for air samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
No field/laboratory du	plicates ana	alyzed as par ision. RPD L	t of this data pac CS/LCSD within	ckage. I	LCS/LCSD % recoveries RPD pory control limits.

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were metNA	
Criteria were not met	
and/or see below	

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +40% or -40% of the IS area in the associated calibration standard.
- * Retention time (RT) within ± 0.06 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION
_Internal_stan _method	dard_not_required	_by_the_metho	dSamples_qua	ntified_by_external	l_standard
Actions:					

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -40%	IS AREA > + 40%
Positive results	J	J
Nondetected results	R	ACCEPT

If a IS retention time varies more than 0.330 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met _X
Criteria were not met
and/or see below

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

Blank Spike (LCS)

Methane

RF = 226379851

[] = (2334071784)/(226379851)

= 10.3 % OK

All criteria were metX
Criteria were not met
and/or see below

XII.	OHANT	TATION	ILIMITS
7XII.	COLIA		4 1 11 1 1 1 1 1 1

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASONS FOR DILUTION
All samples dil	uted by a factor of less th	an 1.64
		Tanah .
	1200	
	10000	
The state of the s		
	A	

3.	Percent Solids						
	List samples which have ≤ 50 % solids						
		weetti li	_				
			_				

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R) $\,$